Lemma 15.13.3. Let $R$ be a ring and $S$ a smooth $R$-algebra. Assume that $A$ is an $R$-algebra and $(A,I)$ is a henselian pair. Then any $R$-algebra map $S \to A/I$ can be lifted to an $R$-algebra map $S \to A$.
Proof. Let $\tau : S \to A/I$ be an $R$-algebra map. Observe that $S \otimes _ R A$ is a smooth $A$-algebra by Algebra, Lemma 10.137.4. Thus by Lemma 15.9.14 we can lift the induced map $S \otimes _ R A \to A/I$ to an $A$-algebra homorphism $S \otimes _ R A \to A'$ where $A \to A'$ is étale and induces an isomorphism $A/I \to A'/IA'$. Since $(A, I)$ is henselian there is an $A$-algebra map $A' \to A$, see Lemma 15.11.6. The composition $S \to S \otimes _ R A \to A' \to A$ is the desired lift. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: