Remark 10.150.9. Let $R \to S \to S'$ be ring maps with $S \to S'$ formally étale (for example étale). Let $M_ i$, $i = 1, 2, 3$ be $S$-modules and let $D_ i : M_ i \to M_{i + 1}$, $i = 1, 2$ be differential operators of finite order. Then if $D'_ i : M'_ i \to M'_{i + 1}$, $i = 1, 2$ are the extensions of $D_ i$ to $M'_ i = S' \otimes _ S M_ i$ as in Lemma 10.150.8, then $D'_2 \circ D'_1$ is the extension of $D_2 \circ D_1$. In particular, if $M$ is an $S$-module, then $M' = S' \otimes _ S M$ is a module over the $S$-algebra $\text{Diff}_{S/R}(M, M)$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: