Lemma 10.9.15. Any submodule $N'$ of $S^{-1}M$ is of the form $S^{-1}N$ for some $N\subset M$. Indeed one can take $N$ to be the inverse image of $N'$ in $M$.
Proof. Let $N$ be the inverse image of $N'$ in $M$. Then one can see that $S^{-1}N\supset N'$. To show they are equal, take $x/s$ in $S^{-1}N$, where $s\in S$ and $x\in N$. This yields that $x/1\in N'$. Since $N'$ is an $S^{-1}R$-submodule we have $x/s = x/1\cdot 1/s\in N'$. This finishes the proof. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: