Lemma 10.18.6. Let $\varphi : R \to S$ be a ring map. Let $\mathfrak p$ be a prime of $R$. The following are equivalent
$\mathfrak p$ is in the image of $\mathop{\mathrm{Spec}}(S) \to \mathop{\mathrm{Spec}}(R)$,
$S \otimes _ R \kappa (\mathfrak p) \not= 0$,
$S_{\mathfrak p}/\mathfrak p S_{\mathfrak p} \not= 0$,
$(S/\mathfrak pS)_{\mathfrak p} \not= 0$, and
$\mathfrak p = \varphi ^{-1}(\mathfrak pS)$.
Comments (0)
There are also: