The Stacks project

Lemma 10.37.7. Let $R$ be a domain with fraction field $K$. Suppose $f = \sum \alpha _ i x^ i$ is an element of $K[x]$.

  1. If $f$ is integral over $R[x]$ then all $\alpha _ i$ are integral over $R$, and

  2. If $f$ is almost integral over $R[x]$ then all $\alpha _ i$ are almost integral over $R$.

Proof. We first prove the second statement. Write $f = \alpha _0 + \alpha _1 x + \ldots + \alpha _ r x^ r$ with $\alpha _ r \not= 0$. By assumption there exists $h = b_0 + b_1 x + \ldots + b_ s x^ s \in R[x]$, $b_ s \not= 0$ such that $f^ n h \in R[x]$ for all $n \geq 0$. This implies that $b_ s \alpha _ r^ n \in R$ for all $n \geq 0$. Hence $\alpha _ r$ is almost integral over $R$. Since the set of almost integral elements form a subring (Lemma 10.37.4) we deduce that $f - \alpha _ r x^ r = \alpha _0 + \alpha _1 x + \ldots + \alpha _{r - 1} x^{r - 1}$ is almost integral over $R[x]$. By induction on $r$ we win.

In order to prove the first statement we will use absolute Noetherian reduction. Namely, write $\alpha _ i = a_ i / b_ i$ and let $P(t) = t^ d + \sum _{j < d} f_ j t^ j$ be a polynomial with coefficients $f_ j \in R[x]$ such that $P(f) = 0$. Let $f_ j = \sum f_{ji}x^ i$. Consider the subring $R_0 \subset R$ generated by the finite list of elements $a_ i, b_ i, f_{ji}$ of $R$. It is a domain; let $K_0$ be its field of fractions. Since $R_0$ is a finite type $\mathbf{Z}$-algebra it is Noetherian, see Lemma 10.31.3. It is still the case that $f \in K_0[x]$ is integral over $R_0[x]$, because all the identities in $R$ among the elements $a_ i, b_ i, f_{ji}$ also hold in $R_0$. By Lemma 10.37.4 the element $f$ is almost integral over $R_0[x]$. By the second statement of the lemma, the elements $\alpha _ i$ are almost integral over $R_0$. And since $R_0$ is Noetherian, they are integral over $R_0$, see Lemma 10.37.4. Of course, then they are integral over $R$. $\square$


Comments (1)

Comment #744 by Wei Xu on

In the statement, I think it would be better if "integral over ", "almost integral over " are replaced by "integral over ", "almost integral over ".

And some typos, "such that " should be "such that ". "" in "It is still the case that is integral over " should be "".

There are also:

  • 3 comment(s) on Section 10.37: Normal rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00H0. Beware of the difference between the letter 'O' and the digit '0'.