Lemma 10.37.8. Let $R$ be a normal domain. Then $R[x]$ is a normal domain.
Proof. The result is true if $R$ is a field $K$ because $K[x]$ is a euclidean domain and hence a principal ideal domain and hence normal by Lemma 10.37.6. Let $g$ be an element of the fraction field of $R[x]$ which is integral over $R[x]$. Because $g$ is integral over $K[x]$ where $K$ is the fraction field of $R$ we may write $g = \alpha _ d x^ d + \alpha _{d-1}x^{d-1} + \ldots + \alpha _0$ with $\alpha _ i \in K$. By Lemma 10.37.7 the elements $\alpha _ i$ are integral over $R$ and hence are in $R$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: