The Stacks project

Lemma 10.106.1. Let $(R, \mathfrak m, \kappa )$ be a regular local ring of dimension $d$. The graded ring $\bigoplus \mathfrak m^ n / \mathfrak m^{n + 1}$ is isomorphic to the graded polynomial algebra $\kappa [X_1, \ldots , X_ d]$.

Proof. Let $x_1, \ldots , x_ d$ be a minimal set of generators for the maximal ideal $\mathfrak m$, see Definition 10.60.10. There is a surjection $\kappa [X_1, \ldots , X_ d] \to \bigoplus \mathfrak m^ n/\mathfrak m^{n + 1}$, which maps $X_ i$ to the class of $x_ i$ in $\mathfrak m/\mathfrak m^2$. Since $d(R) = d$ by Proposition 10.60.9 we know that the numerical polynomial $n \mapsto \dim _\kappa \mathfrak m^ n/\mathfrak m^{n + 1}$ has degree $d - 1$. By Lemma 10.58.10 we conclude that the surjection $\kappa [X_1, \ldots , X_ d] \to \bigoplus \mathfrak m^ n/\mathfrak m^{n + 1}$ is an isomorphism. $\square$

Comments (3)

Comment #2976 by Dario WeiƟmann on

Maybe we could clarify the statement: is the dimension of .

Comment #3528 by Jonas Ehrhard on

Defining the map it should be "which maps to the class of " instead of the other way round.

There are also:

  • 4 comment(s) on Section 10.106: Regular local rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00NO. Beware of the difference between the letter 'O' and the digit '0'.