Lemma 10.114.6. Let k be a field. Let S be a finite type k-algebra. Let X = \mathop{\mathrm{Spec}}(S). Let \mathfrak m \subset S be a maximal ideal and let x \in X be the associated closed point. Then \dim _ x(X) = \dim (S_{\mathfrak m}).
Proof. This is a special case of Lemma 10.114.5. \square
Comments (0)