Lemma 10.134.16. Let R \to S be a ring map of finite type. Let g \in S. For any presentations \alpha : R[x_1, \ldots , x_ n] \to S, and \beta : R[y_1, \ldots , y_ m] \to S_ g we have
(I/I^2)_ g \oplus S^{\oplus m}_ g \cong J/J^2 \oplus S_ g^{\oplus n}
as S_ g-modules where I = \mathop{\mathrm{Ker}}(\alpha ) and J = \mathop{\mathrm{Ker}}(\beta ).
Proof.
Let \beta ' : R[x_1, \ldots , x_ n, x] \to S_ g be the presentation of Lemma 10.134.12 constructed starting with \alpha . Then we know that \mathop{N\! L}\nolimits (\alpha ) \otimes _ S S_ g is homotopy equivalent to \mathop{N\! L}\nolimits (\beta '). We know that \mathop{N\! L}\nolimits (\beta ) and \mathop{N\! L}\nolimits (\beta ') are homotopy equivalent by Lemma 10.134.2. We conclude that \mathop{N\! L}\nolimits (\alpha ) \otimes _ S S_ g is homotopy equivalent to \mathop{N\! L}\nolimits (\beta ). Finally, we apply Lemma 10.134.15.
\square
Comments (3)
Comment #7436 by nkym on
Comment #7441 by Johan on
Comment #7598 by Stacks Project on
There are also: