Lemma 10.133.3. Let $k$ be a field. Let $S$ be a finite type $k$-algebra. If $S$ is a local complete intersection, then $S$ is a Cohen-Macaulay ring.

**Proof.**
Choose a maximal prime $\mathfrak m$ of $S$. We have to show that $S_\mathfrak m$ is Cohen-Macaulay. By assumption we may assume $S = k[x_1, \ldots , x_ n]/(f_1, \ldots , f_ c)$ with $\dim (S) = n - c$. Let $\mathfrak m' \subset k[x_1, \ldots , x_ n]$ be the maximal ideal corresponding to $\mathfrak m$. According to Proposition 10.113.2 the local ring $k[x_1, \ldots , x_ n]_{\mathfrak m'}$ is regular local of dimension $n$. In particular it is Cohen-Macaulay by Lemma 10.105.3. By Lemma 10.59.12 applied $c$ times the local ring $S_{\mathfrak m} = k[x_1, \ldots , x_ n]_{\mathfrak m'}/(f_1, \ldots , f_ c)$ has dimension $\geq n - c$. By assumption $\dim (S_{\mathfrak m}) \leq n - c$. Thus we get equality. This implies that $f_1, \ldots , f_ c$ is a regular sequence in $k[x_1, \ldots , x_ n]_{\mathfrak m'}$ and that $S_{\mathfrak m}$ is Cohen-Macaulay, see Proposition 10.102.4.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #1908 by Keenan Kidwell on

Comment #1981 by Johan on