Definition 10.137.11. Let $R \to S$ be a ring map. Let $\mathfrak q$ be a prime of $S$. We say $R \to S$ is smooth at $\mathfrak q$ if there exists a $g \in S$, $g \not\in \mathfrak q$ such that $R \to S_ g$ is smooth.
Definition 10.137.11. Let $R \to S$ be a ring map. Let $\mathfrak q$ be a prime of $S$. We say $R \to S$ is smooth at $\mathfrak q$ if there exists a $g \in S$, $g \not\in \mathfrak q$ such that $R \to S_ g$ is smooth.
Comments (0)