The Stacks project

Lemma 7.8.7. Let $\mathcal{C}$ be a category. Let $\text{Cov}_ i$, $i = 1, 2$ be two sets of families of morphisms with fixed target which each define the structure of a site on $\mathcal{C}$.

  1. If every $\mathcal{U} \in \text{Cov}_1$ is tautologically equivalent to some $\mathcal{V} \in \text{Cov}_2$, then $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}, \text{Cov}_2) \subset \mathop{\mathit{Sh}}\nolimits (\mathcal{C}, \text{Cov}_1)$. If also, every $\mathcal{U} \in \text{Cov}_2$ is tautologically equivalent to some $\mathcal{V} \in \text{Cov}_1$ then the category of sheaves are equal.

  2. Suppose that for each $\mathcal{U} \in \text{Cov}_1$ there exists a $\mathcal{V} \in \text{Cov}_2$ such that $\mathcal{V}$ refines $\mathcal{U}$. In this case $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}, \text{Cov}_2) \subset \mathop{\mathit{Sh}}\nolimits (\mathcal{C}, \text{Cov}_1)$. If also for every $\mathcal{U} \in \text{Cov}_2$ there exists a $\mathcal{V} \in \text{Cov}_1$ such that $\mathcal{V}$ refines $\mathcal{U}$, then the categories of sheaves are equal.

Proof. Part (1) follows directly from Lemma 7.8.4 and the definitions.

Proof of (2). Let $\mathcal{F}$ be a sheaf of sets for the site $(\mathcal{C}, \text{Cov}_2)$. Let $\mathcal{U} \in \text{Cov}_1$, say $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$. By assumption we may choose a refinement $\mathcal{V} \in \text{Cov}_2$ of $\mathcal{U}$, say $\mathcal{V} = \{ V_ j \to U\} _{j \in J}$ and refinement given by $\alpha : J \to I$ and $f_ j : V_ j \to U_{\alpha (j)}$. Observe that $\mathcal{F}$ satisfies the sheaf condition for $\mathcal{V}$ and for the coverings $\{ V_ j \times _ U U_ i \to U_ i\} _{j \in J}$ as these are in $\text{Cov}_2$. Hence $\mathcal{F}$ satisfies the sheaf condition for $\mathcal{U}$ by Lemma 7.8.6. $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 7.8: Families of morphisms with fixed target

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00VX. Beware of the difference between the letter 'O' and the digit '0'.