Lemma 7.8.8. Let $\mathcal{C}$ be a category. Let $\text{Cov}(\mathcal{C})$ be a proper class of coverings satisfying conditions (1), (2) and (3) of Definition 7.6.2. Let $\text{Cov}_1, \text{Cov}_2 \subset \text{Cov}(\mathcal{C})$ be two subsets of $\text{Cov}(\mathcal{C})$ which endow $\mathcal{C}$ with the structure of a site. If every covering $\mathcal{U} \in \text{Cov}(\mathcal{C})$ is combinatorially equivalent to a covering in $\text{Cov}_1$ and combinatorially equivalent to a covering in $\text{Cov}_2$, then $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}, \text{Cov}_1) = \mathop{\mathit{Sh}}\nolimits (\mathcal{C}, \text{Cov}_2)$.

Proof. This is clear from Lemmas 7.8.7 and 7.8.3 above as the hypothesis implies that every covering $\mathcal{U} \in \text{Cov}_1 \subset \text{Cov}(\mathcal{C})$ is combinatorially equivalent to an element of $\text{Cov}_2$, and similarly with the roles of $\text{Cov}_1$ and $\text{Cov}_2$ reversed. $\square$

There are also:

• 6 comment(s) on Section 7.8: Families of morphisms with fixed target

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).