The Stacks project

Definition 12.21.1. Let $\mathcal{A}$ be an abelian category.

  1. An exact couple is a datum $(A, E, \alpha , f, g)$ where $A$, $E$ are objects of $\mathcal{A}$ and $\alpha $, $f$, $g$ are morphisms as in the following diagram

    \[ \xymatrix{ A \ar[rr]_{\alpha } & & A \ar[ld]^ g \\ & E \ar[lu]^ f & } \]

    with the property that the kernel of each arrow is the image of its predecessor. So $\mathop{\mathrm{Ker}}(\alpha ) = \mathop{\mathrm{Im}}(f)$, $\mathop{\mathrm{Ker}}(f) = \mathop{\mathrm{Im}}(g)$, and $\mathop{\mathrm{Ker}}(g) = \mathop{\mathrm{Im}}(\alpha )$.

  2. A morphism of exact couples $t : (A, E, \alpha , f, g) \to (A', E', \alpha ', f', g')$ is given by morphisms $t_ A : A \to A'$ and $t_ E : E \to E'$ such that $\alpha ' \circ t_ A = t_ A \circ \alpha $, $f' \circ t_ E = t_ A \circ f$, and $g' \circ t_ A = t_ E \circ g$.

Comments (0)

There are also:

  • 3 comment(s) on Section 12.21: Spectral sequences: exact couples

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 011Q. Beware of the difference between the letter 'O' and the digit '0'.