Lemma 12.21.2. Let $(A, E, \alpha , f, g)$ be an exact couple in an abelian category $\mathcal{A}$. Set
$d = g \circ f : E \to E$ so that $d \circ d = 0$,
$E' = \mathop{\mathrm{Ker}}(d)/\mathop{\mathrm{Im}}(d)$,
$A' = \mathop{\mathrm{Im}}(\alpha )$,
$\alpha ' : A' \to A'$ induced by $\alpha $,
$f' : E' \to A'$ induced by $f$,
$g' : A' \to E'$ induced by “$g \circ \alpha ^{-1}$”.
Then we have
$\mathop{\mathrm{Ker}}(d) = f^{-1}(\mathop{\mathrm{Ker}}(g)) = f^{-1}(\mathop{\mathrm{Im}}(\alpha ))$,
$\mathop{\mathrm{Im}}(d) = g(\mathop{\mathrm{Im}}(f)) = g(\mathop{\mathrm{Ker}}(\alpha ))$,
$(A', E', \alpha ', f', g')$ is an exact couple.
Comments (0)
There are also: