Definition 12.19.3. Let $\mathcal{A}$ be an abelian category. A morphism $f : A \to B$ of filtered objects of $\mathcal{A}$ is said to be strict if $f(F^ iA) = f(A) \cap F^ iB$ for all $i \in \mathbf{Z}$.
Definition 12.19.3. Let $\mathcal{A}$ be an abelian category. A morphism $f : A \to B$ of filtered objects of $\mathcal{A}$ is said to be strict if $f(F^ iA) = f(A) \cap F^ iB$ for all $i \in \mathbf{Z}$.
Comments (0)
There are also: