The Stacks project

Lemma 12.19.4. Let $\mathcal{A}$ be an abelian category. Let $f : A \to B$ be a morphism of filtered objects of $\mathcal{A}$. The following are equivalent

  1. $f$ is strict,

  2. the morphism $\mathop{\mathrm{Coim}}(f) \to \mathop{\mathrm{Im}}(f)$ of Lemma 12.3.12 is an isomorphism.

Proof. Note that $\mathop{\mathrm{Coim}}(f) \to \mathop{\mathrm{Im}}(f)$ is an isomorphism of objects of $\mathcal{A}$, and that part (2) signifies that it is an isomorphism of filtered objects. By the description of kernels and cokernels in the proof of Lemma 12.19.2 we see that the filtration on $\mathop{\mathrm{Coim}}(f)$ is the quotient filtration coming from $A \to \mathop{\mathrm{Coim}}(f)$. Similarly, the filtration on $\mathop{\mathrm{Im}}(f)$ is the induced filtration coming from the injection $\mathop{\mathrm{Im}}(f) \to B$. The definition of strict is exactly that the quotient filtration is the induced filtration. $\square$


Comments (0)

There are also:

  • 6 comment(s) on Section 12.19: Filtrations

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05SI. Beware of the difference between the letter 'O' and the digit '0'.