Lemma 12.23.5. Let $\mathcal{A}$ be an abelian category. Let $(K, F, d)$ be a filtered differential object of $\mathcal{A}$. If $Z_\infty ^ p$ and $B_\infty ^ p$ exist (see proof), then

1. the limit $E_\infty$ exists and is graded having $E_\infty ^ p = Z_\infty ^ p/B_\infty ^ p$ in degree $p$, and

2. the associated graded $\text{gr}(H(K))$ of the cohomology of $K$ is a graded subquotient of the graded limit object $E_\infty$.

Proof. The objects $Z_\infty$, $B_\infty$, and the limit $E_\infty = Z_\infty /B_\infty$ of Definition 12.20.2 are objects of $\text{Gr}(\mathcal{A})$ by our construction of the spectral sequence in the proof of Lemma 12.23.2. Since $Z_ r = \bigoplus Z_ r^ p$ and $B_ r = \bigoplus B_ r^ p$, if we assume that

$Z_\infty ^ p = \bigcap \nolimits _ r Z_ r^ p = \frac{\bigcap _ r (F^ pK \cap d^{-1}(F^{p + r}K) + F^{p + 1}K)}{F^{p + 1}K}$

and

$B_\infty ^ p = \bigcup \nolimits _ r B_ r^ p = \frac{\bigcup _ r (F^ pK \cap d(F^{p - r + 1}K) + F^{p + 1}K)}{F^{p + 1}K}.$

exist, then $Z_\infty$ and $B_\infty$ exist with degree $p$ parts $Z_\infty ^ p$ and $B_\infty ^ p$ (follows from an elementary argument about unions and intersections of graded subobjects). Thus

$E_\infty ^ p = \frac{\bigcap _ r (F^ pK \cap d^{-1}(F^{p + r}K) + F^{p + 1}K)}{\bigcup _ r (F^ pK \cap d(F^{p - r + 1}K) + F^{p + 1}K)}.$

where the top and bottom exist. We have

12.23.5.1
$$\label{homology-equation-on-top} \mathop{\mathrm{Ker}}(d) \cap F^ pK + F^{p + 1}K \subset \bigcap \nolimits _ r \left(F^ pK \cap d^{-1}(F^{p + r}K) + F^{p + 1}K\right)$$

and

12.23.5.2
$$\label{homology-equation-at-bottom} \bigcup \nolimits _ r \left(F^ pK \cap d(F^{p - r + 1}K) + F^{p + 1}K\right) \subset \mathop{\mathrm{Im}}(d) \cap F^ pK + F^{p + 1}K.$$

Thus a subquotient of $E_\infty ^ p$ is

$\frac{\mathop{\mathrm{Ker}}(d) \cap F^ pK + F^{p + 1}K}{\mathop{\mathrm{Im}}(d) \cap F^ pK + F^{p + 1}K} = \frac{\mathop{\mathrm{Ker}}(d) \cap F^ pK}{\mathop{\mathrm{Im}}(d) \cap F^ pK + \mathop{\mathrm{Ker}}(d) \cap F^{p + 1}K}$

Comparing with the formula given for $\text{gr}^ pH(K)$ in the discussion following Definition 12.23.4 we conclude. $\square$

Comment #1452 by Zhe Zhang on

I can't see why Since by definition (if I'm not mistaken) this stuff should be $F^pH(K)/F^{p+1}H(K)$ where Hence the quotient should be But then the inclusion in (12.20.5.1) (and the next) cannot hold in general, unless one put some extra conditions here, for example, the filtration on K is exhaustive.

Comment #1454 by Zhe Zhang on

...and the inclusions are incorrect.(12.20.5.1) should be and (12.20.5.2) should be

Comment #1455 by Zhe Zhang on

A typo in the Comment #1452

Comment #1462 by on

Thanks very much. It turns out the lemma is correct anyway without extra assumptions (because somehow the two mistakes you pointed out cancelled each other). The fix is here. The project will be updated later today and then you'll be able to read it online.

There are also:

• 5 comment(s) on Section 12.23: Spectral sequences: filtered differential objects

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).