Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Definition 12.24.9. Let $\mathcal{A}$ be an abelian category. Let $(K^\bullet , F)$ be a filtered complex of $\mathcal{A}$. We say the spectral sequence associated to $(K^\bullet , F)$

  1. weakly converges to $H^*(K^\bullet )$ if $\text{gr}^ pH^ n(K^\bullet ) = E_{\infty }^{p, n - p}$ via Lemma 12.24.6 for all $p, n \in \mathbf{Z}$,

  2. abuts to $H^*(K^\bullet )$ if it weakly converges to $H^*(K^\bullet )$ and $\bigcap _ p F^ pH^ n(K^\bullet ) = 0$ and $\bigcup _ p F^ p H^ n(K^\bullet ) = H^ n(K^\bullet )$ for all $n$,

  3. converges to $H^*(K^\bullet )$ if it is regular, abuts to $H^*(K^\bullet )$, and $H^ n(K^\bullet ) = \mathop{\mathrm{lim}}\nolimits _ p H^ n(K^\bullet )/F^ pH^ n(K^\bullet )$.


Comments (0)

There are also:

  • 1 comment(s) on Section 12.24: Spectral sequences: filtered complexes

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.