Lemma 17.9.2. Let $f : (X, \mathcal{O}_ X) \to (Y, \mathcal{O}_ Y)$ be a morphism of ringed spaces. The pullback $f^*\mathcal{G}$ of a finite type $\mathcal{O}_ Y$-module is a finite type $\mathcal{O}_ X$-module.
Proof. Arguing as in the proof of Lemma 17.8.2 we may assume $\mathcal{G}$ is globally generated by finitely many sections. We have seen that $f^*$ commutes with all colimits, and is right exact, see Lemma 17.3.3. Thus if we have a surjection
\[ \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{O}_ Y \to \mathcal{G} \to 0 \]
then upon applying $f^*$ we obtain the surjection
\[ \bigoplus \nolimits _{i = 1, \ldots , n} \mathcal{O}_ X \to f^*\mathcal{G} \to 0. \]
This implies the lemma. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: