Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 17.21.4. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F} \to 0$ be an exact sequence of sheaves of $\mathcal{O}_ X$-modules. For each $n \geq 1$ there is an exact sequence

\[ \mathcal{F}_2 \otimes _{\mathcal{O}_ X} \text{Sym}^{n - 1}(\mathcal{F}_1) \to \text{Sym}^ n(\mathcal{F}_1) \to \text{Sym}^ n(\mathcal{F}) \to 0 \]

and similarly an exact sequence

\[ \mathcal{F}_2 \otimes _{\mathcal{O}_ X} \wedge ^{n - 1}(\mathcal{F}_1) \to \wedge ^ n(\mathcal{F}_1) \to \wedge ^ n(\mathcal{F}) \to 0 \]

Proof. See Algebra, Lemma 10.13.2. $\square$


Comments (0)

There are also:

  • 3 comment(s) on Section 17.21: Symmetric and exterior powers

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.