Loading web-font TeX/Math/Italic

The Stacks project

Lemma 17.27.2. Let X be a topological space. Let \mathcal{O}_ X be a presheaf of rings. Let \mathcal{S} \subset \mathcal{O}_ X be a pre-sheaf of sets contained in \mathcal{O}_ X. Suppose that for every open U \subset X the set \mathcal{S}(U) \subset \mathcal{O}_ X(U) is a multiplicative subset. For any presheaf of \mathcal{O}_ X-modules \mathcal{F} we have

\mathcal{S}^{-1}\mathcal{F} = \mathcal{S}^{-1}\mathcal{O}_ X \otimes _{p, \mathcal{O}_ X} \mathcal{F}

(see Sheaves, Section 6.6 for notation) and if \mathcal{F} and \mathcal{O}_ X are sheaves then

(\mathcal{S}^{-1}\mathcal{F})^\# = (\mathcal{S}^{-1}\mathcal{O}_ X)^\# \otimes _{\mathcal{O}_ X} \mathcal{F}

(see Sheaves, Section 6.20 for notation).

Proof. Omitted. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.