Lemma 26.17.6. Let f : X \to S and g : Y \to S be morphisms of schemes with the same target.
If f : X \to S is a closed immersion, then X \times _ S Y \to Y is a closed immersion. Moreover, if X \to S corresponds to the quasi-coherent sheaf of ideals \mathcal{I} \subset \mathcal{O}_ S, then X \times _ S Y \to Y corresponds to the sheaf of ideals \mathop{\mathrm{Im}}(g^*\mathcal{I} \to \mathcal{O}_ Y).
If f : X \to S is an open immersion, then X \times _ S Y \to Y is an open immersion.
If f : X \to S is an immersion, then X \times _ S Y \to Y is an immersion.
Comments (3)
Comment #2360 by Simon Pepin Lehalleur on
Comment #8465 by Elías Guisado on
Comment #9081 by Stacks project on
There are also: