The Stacks project

Lemma 27.4.2. In Situation 27.3.1. Let $F$ be the functor associated to $(S, \mathcal{A})$ above. If $S$ is affine, then $F$ is representable by the affine scheme $\mathop{\mathrm{Spec}}(\Gamma (S, \mathcal{A}))$.

Proof. Write $S = \mathop{\mathrm{Spec}}(R)$ and $A = \Gamma (S, \mathcal{A})$. Then $A$ is an $R$-algebra and $\mathcal{A} = \widetilde A$. The ring map $R \to A$ gives rise to a canonical map

\[ f_{univ} : \mathop{\mathrm{Spec}}(A) \longrightarrow S = \mathop{\mathrm{Spec}}(R). \]

We have $f_{univ}^*\mathcal{A} = \widetilde{A \otimes _ R A}$ by Schemes, Lemma 26.7.3. Hence there is a canonical map

\[ \varphi _{univ} : f_{univ}^*\mathcal{A} = \widetilde{A \otimes _ R A} \longrightarrow \widetilde A = \mathcal{O}_{\mathop{\mathrm{Spec}}(A)} \]

coming from the $A$-module map $A \otimes _ R A \to A$, $a \otimes a' \mapsto aa'$. We claim that the pair $(f_{univ}, \varphi _{univ})$ represents $F$ in this case. In other words we claim that for any scheme $T$ the map

\[ \mathop{\mathrm{Mor}}\nolimits (T, \mathop{\mathrm{Spec}}(A)) \longrightarrow \{ \text{pairs } (f, \varphi )\} ,\quad a \longmapsto (f_{univ} \circ a, a^*\varphi ) \]

is bijective.

Let us construct the inverse map. For any pair $(f : T \to S, \varphi )$ we get the induced ring map

\[ \xymatrix{ A = \Gamma (S, \mathcal{A}) \ar[r]^{f^*} & \Gamma (T, f^*\mathcal{A}) \ar[r]^{\varphi } & \Gamma (T, \mathcal{O}_ T) } \]

This induces a morphism of schemes $T \to \mathop{\mathrm{Spec}}(A)$ by Schemes, Lemma 26.6.4.

The verification that this map is inverse to the map displayed above is omitted. $\square$

Comments (0)

There are also:

  • 7 comment(s) on Section 27.4: Relative spectrum as a functor

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01LT. Beware of the difference between the letter 'O' and the digit '0'.