The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

26.4 Relative spectrum as a functor

We place ourselves in Situation 26.3.1, i.e., $S$ is a scheme and $\mathcal{A}$ is a quasi-coherent sheaf of $\mathcal{O}_ S$-algebras.

For any $f : T \to S$ the pullback $f^*\mathcal{A}$ is a quasi-coherent sheaf of $\mathcal{O}_ T$-algebras. We are going to consider pairs $(f : T \to S, \varphi )$ where $f$ is a morphism of schemes and $\varphi : f^*\mathcal{A} \to \mathcal{O}_ T$ is a morphism of $\mathcal{O}_ T$-algebras. Note that this is the same as giving a $f^{-1}\mathcal{O}_ S$-algebra homomorphism $\varphi : f^{-1}\mathcal{A} \to \mathcal{O}_ T$, see Sheaves, Lemma 6.20.2. This is also the same as giving a $\mathcal{O}_ S$-algebra map $\varphi : \mathcal{A} \to f_*\mathcal{O}_ T$, see Sheaves, Lemma 6.24.7. We will use all three ways of thinking about $\varphi $, without further mention.

Given such a pair $(f : T \to S, \varphi )$ and a morphism $a : T' \to T$ we get a second pair $(f' = f \circ a, \varphi ' = a^*\varphi )$ which we call the pullback of $(f, \varphi )$. One way to describe $\varphi ' = a^*\varphi $ is as the composition $\mathcal{A} \to f_*\mathcal{O}_ T \to f'_*\mathcal{O}_{T'}$ where the second map is $f_*a^\sharp $ with $a^\sharp : \mathcal{O}_ T \to a_*\mathcal{O}_{T'}$. In this way we have defined a functor

26.4.0.1
\begin{eqnarray} \label{constructions-equation-spec} F : (\mathit{Sch}/S)^{opp} & \longrightarrow & \textit{Sets} \\ T & \longmapsto & F(T) = \{ \text{pairs }(f, \varphi ) \text{ as above}\} \nonumber \end{eqnarray}

Lemma 26.4.1. In Situation 26.3.1. Let $F$ be the functor associated to $(S, \mathcal{A})$ above. Let $g : S' \to S$ be a morphism of schemes. Set $\mathcal{A}' = g^*\mathcal{A}$. Let $F'$ be the functor associated to $(S', \mathcal{A}')$ above. Then there is a canonical isomorphism

\[ F' \cong h_{S'} \times _{h_ S} F \]

of functors.

Proof. A pair $(f' : T \to S', \varphi ' : (f')^*\mathcal{A}' \to \mathcal{O}_ T)$ is the same as a pair $(f, \varphi : f^*\mathcal{A} \to \mathcal{O}_ T)$ together with a factorization of $f$ as $f = g \circ f'$. Namely with this notation we have $(f')^* \mathcal{A}' = (f')^*g^*\mathcal{A} = f^*\mathcal{A}$. Hence the lemma. $\square$

Lemma 26.4.2. In Situation 26.3.1. Let $F$ be the functor associated to $(S, \mathcal{A})$ above. If $S$ is affine, then $F$ is representable by the affine scheme $\mathop{\mathrm{Spec}}(\Gamma (S, \mathcal{A}))$.

Proof. Write $S = \mathop{\mathrm{Spec}}(R)$ and $A = \Gamma (S, \mathcal{A})$. Then $A$ is an $R$-algebra and $\mathcal{A} = \widetilde A$. The ring map $R \to A$ gives rise to a canonical map

\[ f_{univ} : \mathop{\mathrm{Spec}}(A) \longrightarrow S = \mathop{\mathrm{Spec}}(R). \]

We have $f_{univ}^*\mathcal{A} = \widetilde{A \otimes _ R A}$ by Schemes, Lemma 25.7.3. Hence there is a canonical map

\[ \varphi _{univ} : f_{univ}^*\mathcal{A} = \widetilde{A \otimes _ R A} \longrightarrow \widetilde A = \mathcal{O}_{\mathop{\mathrm{Spec}}(A)} \]

coming from the $A$-module map $A \otimes _ R A \to A$, $a \otimes a' \mapsto aa'$. We claim that the pair $(f_{univ}, \varphi _{univ})$ represents $F$ in this case. In other words we claim that for any scheme $T$ the map

\[ \mathop{Mor}\nolimits (T, \mathop{\mathrm{Spec}}(A)) \longrightarrow \{ \text{pairs } (f, \varphi )\} ,\quad a \longmapsto (f_{univ} \circ a, a^*\varphi ) \]

is bijective.

Let us construct the inverse map. For any pair $(f : T \to S, \varphi )$ we get the induced ring map

\[ \xymatrix{ A = \Gamma (S, \mathcal{A}) \ar[r]^{f^*} & \Gamma (T, f^*\mathcal{A}) \ar[r]^{\varphi } & \Gamma (T, \mathcal{O}_ T) } \]

This induces a morphism of schemes $T \to \mathop{\mathrm{Spec}}(A)$ by Schemes, Lemma 25.6.4.

The verification that this map is inverse to the map displayed above is omitted. $\square$

Proof. We are going to use Schemes, Lemma 25.15.4.

First we check that $F$ satisfies the sheaf property for the Zariski topology. Namely, suppose that $T$ is a scheme, that $T = \bigcup _{i \in I} U_ i$ is an open covering, and that $(f_ i, \varphi _ i) \in F(U_ i)$ such that $(f_ i, \varphi _ i)|_{U_ i \cap U_ j} = (f_ j, \varphi _ j)|_{U_ i \cap U_ j}$. This implies that the morphisms $f_ i : U_ i \to S$ glue to a morphism of schemes $f : T \to S$ such that $f|_{I_ i} = f_ i$, see Schemes, Section 25.14. Thus $f_ i^*\mathcal{A} = f^*\mathcal{A}|_{U_ i}$ and by assumption the morphisms $\varphi _ i$ agree on $U_ i \cap U_ j$. Hence by Sheaves, Section 6.33 these glue to a morphism of $\mathcal{O}_ T$-algebras $f^*\mathcal{A} \to \mathcal{O}_ T$. This proves that $F$ satisfies the sheaf condition with respect to the Zariski topology.

Let $S = \bigcup _{i \in I} U_ i$ be an affine open covering. Let $F_ i \subset F$ be the subfunctor consisting of those pairs $(f : T \to S, \varphi )$ such that $f(T) \subset U_ i$.

We have to show each $F_ i$ is representable. This is the case because $F_ i$ is identified with the functor associated to $U_ i$ equipped with the quasi-coherent $\mathcal{O}_{U_ i}$-algebra $\mathcal{A}|_{U_ i}$, by Lemma 26.4.1. Thus the result follows from Lemma 26.4.2.

Next we show that $F_ i \subset F$ is representable by open immersions. Let $(f : T \to S, \varphi ) \in F(T)$. Consider $V_ i = f^{-1}(U_ i)$. It follows from the definition of $F_ i$ that given $a : T' \to T$ we gave $a^*(f, \varphi ) \in F_ i(T')$ if and only if $a(T') \subset V_ i$. This is what we were required to show.

Finally, we have to show that the collection $(F_ i)_{i \in I}$ covers $F$. Let $(f : T \to S, \varphi ) \in F(T)$. Consider $V_ i = f^{-1}(U_ i)$. Since $S = \bigcup _{i \in I} U_ i$ is an open covering of $S$ we see that $T = \bigcup _{i \in I} V_ i$ is an open covering of $T$. Moreover $(f, \varphi )|_{V_ i} \in F_ i(V_ i)$. This finishes the proof of the lemma. $\square$

Lemma 26.4.4. In Situation 26.3.1. The scheme $\pi : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to S$ constructed in Lemma 26.3.4 and the scheme representing the functor $F$ are canonically isomorphic as schemes over $S$.

Proof. Let $X \to S$ be the scheme representing the functor $F$. Consider the sheaf of $\mathcal{O}_ S$-algebras $\mathcal{R} = \pi _*\mathcal{O}_{\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})}$. By construction of $\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})$ we have isomorphisms $\mathcal{A}(U) \to \mathcal{R}(U)$ for every affine open $U \subset S$; this follows from Lemma 26.3.4 part (1). For $U \subset U' \subset S$ open these isomorphisms are compatible with the restriction mappings; this follows from Lemma 26.3.4 part (2). Hence by Sheaves, Lemma 6.30.13 these isomorphisms result from an isomorphism of $\mathcal{O}_ S$-algebras $\varphi : \mathcal{A} \to \mathcal{R}$. Hence this gives an element $(\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}), \varphi ) \in F(\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}))$. Since $X$ represents the functor $F$ we get a corresponding morphism of schemes $can : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to X$ over $S$.

Let $U \subset S$ be any affine open. Let $F_ U \subset F$ be the subfunctor of $F$ corresponding to pairs $(f, \varphi )$ over schemes $T$ with $f(T) \subset U$. Clearly the base change $X_ U$ represents $F_ U$. Moreover, $F_ U$ is represented by $\mathop{\mathrm{Spec}}(\mathcal{A}(U)) = \pi ^{-1}(U)$ according to Lemma 26.4.2. In other words $X_ U \cong \pi ^{-1}(U)$. We omit the verification that this identification is brought about by the base change of the morphism $can$ to $U$. $\square$

Definition 26.4.5. Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent sheaf of $\mathcal{O}_ S$-algebras. The relative spectrum of $\mathcal{A}$ over $S$, or simply the spectrum of $\mathcal{A}$ over $S$ is the scheme constructed in Lemma 26.3.4 which represents the functor $F$ (26.4.0.1), see Lemma 26.4.4. We denote it $\pi : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to S$. The “universal family” is a morphism of $\mathcal{O}_ S$-algebras

\[ \mathcal{A} \longrightarrow \pi _*\mathcal{O}_{\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})} \]

The following lemma says among other things that forming the relative spectrum commutes with base change.

Lemma 26.4.6. Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent sheaf of $\mathcal{O}_ S$-algebras. Let $\pi : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to S$ be the relative spectrum of $\mathcal{A}$ over $S$.

  1. For every affine open $U \subset S$ the inverse image $\pi ^{-1}(U)$ is affine.

  2. For every morphism $g : S' \to S$ we have $S' \times _ S \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) = \underline{\mathop{\mathrm{Spec}}}_{S'}(g^*\mathcal{A})$.

  3. The universal map

    \[ \mathcal{A} \longrightarrow \pi _*\mathcal{O}_{\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})} \]

    is an isomorphism of $\mathcal{O}_ S$-algebras.

Proof. Part (1) comes from the description of the relative spectrum by glueing, see Lemma 26.3.4. Part (2) follows immediately from Lemma 26.4.1. Part (3) follows because it is local on $S$ and it is clear in case $S$ is affine by Lemma 26.4.2 for example. $\square$

Lemma 26.4.7. Let $f : X \to S$ be a quasi-compact and quasi-separated morphism of schemes. By Schemes, Lemma 25.24.1 the sheaf $f_*\mathcal{O}_ X$ is a quasi-coherent sheaf of $\mathcal{O}_ S$-algebras. There is a canonical morphism

\[ can : X \longrightarrow \underline{\mathop{\mathrm{Spec}}}_ S(f_*\mathcal{O}_ X) \]

of schemes over $S$. For any affine open $U \subset S$ the restriction $can|_{f^{-1}(U)}$ is identified with the canonical morphism

\[ f^{-1}(U) \longrightarrow \mathop{\mathrm{Spec}}(\Gamma (f^{-1}(U), \mathcal{O}_ X)) \]

coming from Schemes, Lemma 25.6.4.

Proof. The morphism comes, via the definition of $\underline{\mathop{\mathrm{Spec}}}$ as the scheme representing the functor $F$, from the canonical map $\varphi : f^*f_*\mathcal{O}_ X \to \mathcal{O}_ X$ (which by adjointness of push and pull corresponds to $\text{id} : f_*\mathcal{O}_ X \to f_*\mathcal{O}_ X$). The statement on the restriction to $f^{-1}(U)$ follows from the description of the relative spectrum over affines, see Lemma 26.4.2. $\square$


Comments (3)

Comment #3417 by Anon on

In the last equation of Lemma 26.4.2 (contructing the inverse map) it's easy to see that gives a map on global sections, but how is the map defined?

Also, I think there's a typo in the second last equation of Lemma 26.4.2. The map should take to .

Comment #3430 by Herman Rohrbach on

Typo in equation (26.4.0.1): should be .

Comment #3479 by on

@#3417 Thanks for the typo. I am not sure what you first question was, but it might be related to the following general question: given a morphism and a -module , how does one define the canonical map ? A good answer is to go back to the definition of the pullback of a module in Section 6.24 and define it using the construction of the pullback . A more highbrow method is to use the adjunction mapping and then use that .

@#3430 Thanks for the typo. The change is here.


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01LQ. Beware of the difference between the letter 'O' and the digit '0'.