Processing math: 100%

The Stacks project

Definition 27.4.5. Let S be a scheme. Let \mathcal{A} be a quasi-coherent sheaf of \mathcal{O}_ S-algebras. The relative spectrum of \mathcal{A} over S, or simply the spectrum of \mathcal{A} over S is the scheme constructed in Lemma 27.3.4 which represents the functor F (27.4.0.1), see Lemma 27.4.4. We denote it \pi : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to S. The “universal family” is a morphism of \mathcal{O}_ S-algebras

\mathcal{A} \longrightarrow \pi _*\mathcal{O}_{\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})}

Comments (0)

There are also:

  • 14 comment(s) on Section 27.4: Relative spectrum as a functor

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.