Lemma 27.4.6. Let S be a scheme. Let \mathcal{A} be a quasi-coherent sheaf of \mathcal{O}_ S-algebras. Let \pi : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to S be the relative spectrum of \mathcal{A} over S.
For every affine open U \subset S the inverse image \pi ^{-1}(U) is affine.
For every morphism g : S' \to S we have S' \times _ S \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) = \underline{\mathop{\mathrm{Spec}}}_{S'}(g^*\mathcal{A}).
The universal map
\mathcal{A} \longrightarrow \pi _*\mathcal{O}_{\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})}is an isomorphism of \mathcal{O}_ S-algebras.
Comments (0)
There are also: