Lemma 27.4.6. Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent sheaf of $\mathcal{O}_ S$-algebras. Let $\pi : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to S$ be the relative spectrum of $\mathcal{A}$ over $S$.
For every affine open $U \subset S$ the inverse image $\pi ^{-1}(U)$ is affine.
For every morphism $g : S' \to S$ we have $S' \times _ S \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) = \underline{\mathop{\mathrm{Spec}}}_{S'}(g^*\mathcal{A})$.
The universal map
\[ \mathcal{A} \longrightarrow \pi _*\mathcal{O}_{\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})} \]is an isomorphism of $\mathcal{O}_ S$-algebras.
Comments (0)
There are also: