Lemma 27.4.4. In Situation 27.3.1. The scheme $\pi : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to S$ constructed in Lemma 27.3.4 and the scheme representing the functor $F$ are canonically isomorphic as schemes over $S$.
Proof. Let $X \to S$ be the scheme representing the functor $F$. Consider the sheaf of $\mathcal{O}_ S$-algebras $\mathcal{R} = \pi _*\mathcal{O}_{\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})}$. By construction of $\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})$ we have isomorphisms $\mathcal{A}(U) \to \mathcal{R}(U)$ for every affine open $U \subset S$; this follows from Lemma 27.3.4 part (1). For $U \subset U' \subset S$ open these isomorphisms are compatible with the restriction mappings; this follows from Lemma 27.3.4 part (2). Hence by Sheaves, Lemma 6.30.13 these isomorphisms result from an isomorphism of $\mathcal{O}_ S$-algebras $\varphi : \mathcal{A} \to \mathcal{R}$. Hence this gives an element $(\pi , \varphi ) \in F(\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}))$. Since $X$ represents the functor $F$ we get a corresponding morphism of schemes $can : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to X$ over $S$.
Let $U \subset S$ be any affine open. Let $F_ U \subset F$ be the subfunctor of $F$ corresponding to pairs $(f, \varphi )$ over schemes $T$ with $f(T) \subset U$. Clearly the base change $X_ U$ represents $F_ U$. Moreover, $F_ U$ is represented by $\mathop{\mathrm{Spec}}(\mathcal{A}(U)) = \pi ^{-1}(U)$ according to Lemma 27.4.2. In other words $X_ U \cong \pi ^{-1}(U)$. We omit the verification that this identification is brought about by the base change of the morphism $can$ to $U$. $\square$
Comments (2)
Comment #8433 by Elías Guisado on
Comment #9057 by Stacks project on
There are also: