The Stacks project

Lemma 27.4.4. In Situation 27.3.1. The scheme $\pi : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to S$ constructed in Lemma 27.3.4 and the scheme representing the functor $F$ are canonically isomorphic as schemes over $S$.

Proof. Let $X \to S$ be the scheme representing the functor $F$. Consider the sheaf of $\mathcal{O}_ S$-algebras $\mathcal{R} = \pi _*\mathcal{O}_{\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})}$. By construction of $\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A})$ we have isomorphisms $\mathcal{A}(U) \to \mathcal{R}(U)$ for every affine open $U \subset S$; this follows from Lemma 27.3.4 part (1). For $U \subset U' \subset S$ open these isomorphisms are compatible with the restriction mappings; this follows from Lemma 27.3.4 part (2). Hence by Sheaves, Lemma 6.30.13 these isomorphisms result from an isomorphism of $\mathcal{O}_ S$-algebras $\varphi : \mathcal{A} \to \mathcal{R}$. Hence this gives an element $(\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}), \varphi ) \in F(\underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}))$. Since $X$ represents the functor $F$ we get a corresponding morphism of schemes $can : \underline{\mathop{\mathrm{Spec}}}_ S(\mathcal{A}) \to X$ over $S$.

Let $U \subset S$ be any affine open. Let $F_ U \subset F$ be the subfunctor of $F$ corresponding to pairs $(f, \varphi )$ over schemes $T$ with $f(T) \subset U$. Clearly the base change $X_ U$ represents $F_ U$. Moreover, $F_ U$ is represented by $\mathop{\mathrm{Spec}}(\mathcal{A}(U)) = \pi ^{-1}(U)$ according to Lemma 27.4.2. In other words $X_ U \cong \pi ^{-1}(U)$. We omit the verification that this identification is brought about by the base change of the morphism $can$ to $U$. $\square$


Comments (1)

Comment #8433 by on

I think the expression should be instead. Here's an alternative way to phrase the proof that doesn't require invoking : "Let be open affine. Since the functor is represented by , let be the universal element. By the proof of 26.15.4 (we verified the hypotheses in the proof of 27.4.3), it suffices to see that . This follows from the construction of and ."

There are also:

  • 13 comment(s) on Section 27.4: Relative spectrum as a functor

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01LV. Beware of the difference between the letter 'O' and the digit '0'.