The Stacks project

Lemma 27.16.10. Let $S$ be a scheme and $\mathcal{A}$ be a quasi-coherent sheaf of graded $\mathcal{O}_ S$-algebras. Let $g : S' \to S$ be any morphism of schemes. Then there is a canonical isomorphism

\[ r : \underline{\text{Proj}}_{S'}(g^*\mathcal{A}) \longrightarrow S' \times _ S \underline{\text{Proj}}_ S(\mathcal{A}) \]

as well as a corresponding isomorphism

\[ \theta : r^*\text{pr}_2^*\left(\bigoplus \nolimits _{d \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(d)\right) \longrightarrow \bigoplus \nolimits _{d \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_{S'}(g^*\mathcal{A})}(d) \]

of $\mathbf{Z}$-graded $\mathcal{O}_{\underline{\text{Proj}}_{S'}(g^*\mathcal{A})}$-algebras.

Proof. This follows from Lemma 27.16.1 and the construction of $\underline{\text{Proj}}_ S(\mathcal{A})$ in Lemma 27.16.5 as the union of the schemes $U_ d$ representing the functors $F_ d$. In terms of the construction of relative Proj via glueing this isomorphism is given by the isomorphisms constructed in Lemma 27.11.6 which provides us with the isomorphism $\theta $. Some details omitted. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01O3. Beware of the difference between the letter 'O' and the digit '0'.