Lemma 27.16.10. Let $S$ be a scheme and $\mathcal{A}$ be a quasi-coherent sheaf of graded $\mathcal{O}_ S$-algebras. Let $g : S' \to S$ be any morphism of schemes. Then there is a canonical isomorphism

\[ r : \underline{\text{Proj}}_{S'}(g^*\mathcal{A}) \longrightarrow S' \times _ S \underline{\text{Proj}}_ S(\mathcal{A}) \]

as well as a corresponding isomorphism

\[ \theta : r^*\text{pr}_2^*\left(\bigoplus \nolimits _{d \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_ S(\mathcal{A})}(d)\right) \longrightarrow \bigoplus \nolimits _{d \in \mathbf{Z}} \mathcal{O}_{\underline{\text{Proj}}_{S'}(g^*\mathcal{A})}(d) \]

of $\mathbf{Z}$-graded $\mathcal{O}_{\underline{\text{Proj}}_{S'}(g^*\mathcal{A})}$-algebras.

## Comments (0)