The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 27.22.2. Let $X$ be a quasi-compact and quasi-separated scheme. Let $U \subset X$ be a quasi-compact open. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Let $\mathcal{G} \subset \mathcal{F}|_ U$ be a quasi-coherent $\mathcal{O}_ U$-submodule which is of finite type. Then there exists a quasi-coherent submodule $\mathcal{G}' \subset \mathcal{F}$ which is of finite type such that $\mathcal{G}'|_ U = \mathcal{G}$.

Proof. Let $n$ be the minimal number of affine opens $U_ i \subset X$, $i = 1, \ldots , n$ such that $X = U \cup \bigcup U_ i$. (Here we use that $X$ is quasi-compact.) Suppose we can prove the lemma for the case $n = 1$. Then we can successively extend $\mathcal{G}$ to a $\mathcal{G}_1$ over $U \cup U_1$ to a $\mathcal{G}_2$ over $U \cup U_1 \cup U_2$ to a $\mathcal{G}_3$ over $U \cup U_1 \cup U_2 \cup U_3$, and so on. Thus we reduce to the case $n = 1$.

Thus we may assume that $X = U \cup V$ with $V$ affine. Since $X$ is quasi-separated and $U$, $V$ are quasi-compact open, we see that $U \cap V$ is a quasi-compact open. It suffices to prove the lemma for the system $(V, U \cap V, \mathcal{F}|_ V, \mathcal{G}|_{U \cap V})$ since we can glue the resulting sheaf $\mathcal{G}'$ over $V$ to the given sheaf $\mathcal{G}$ over $U$ along the common value over $U \cap V$. Thus we reduce to the case where $X$ is affine.

Assume $X = \mathop{\mathrm{Spec}}(R)$. Write $\mathcal{F} = \widetilde M$ for some $R$-module $M$. By Lemma 27.22.1 above we may find a quasi-coherent subsheaf $\mathcal{H} \subset \mathcal{F}$ which restricts to $\mathcal{G}$ over $U$. Write $\mathcal{H} = \widetilde N$ for some $R$-module $N$. For every $u \in U$ there exists an $f \in R$ such that $u \in D(f) \subset U$ and such that $N_ f$ is finitely generated, see Lemma 27.16.1. Since $U$ is quasi-compact we can cover it by finitely many $D(f_ i)$ such that $N_{f_ i}$ is generated by finitely many elements, say $x_{i, 1}/f_ i^ N, \ldots , x_{i, r_ i}/f_ i^ N$. Let $N' \subset N$ be the submodule generated by the elements $x_{i, j}$. Then the subsheaf $\mathcal{G} := \widetilde{N'} \subset \mathcal{H} \subset \mathcal{F}$ works. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01PF. Beware of the difference between the letter 'O' and the digit '0'.