Lemma 29.4.3. Let i : Z \to X be a closed immersion of schemes. There is a functor1 i^! : \mathit{QCoh}(\mathcal{O}_ X) \to \mathit{QCoh}(\mathcal{O}_ Z) which is a right adjoint to i_*. (Compare Modules, Lemma 17.6.3.)
Proof. Given quasi-coherent \mathcal{O}_ X-module \mathcal{G} we consider the subsheaf \mathcal{H}_ Z(\mathcal{G}) of \mathcal{G} of local sections annihilated by \mathcal{I}. By Lemma 29.4.2 there is a canonical largest quasi-coherent \mathcal{O}_ X-submodule \mathcal{H}_ Z(\mathcal{G})'. By construction we have
\mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{F}, \mathcal{H}_ Z(\mathcal{G})') = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{F}, \mathcal{G})
for any quasi-coherent \mathcal{O}_ Z-module \mathcal{F}. Hence we can set i^!\mathcal{G} = i^*(\mathcal{H}_ Z(\mathcal{G})'). Details omitted. \square
[1] This is likely nonstandard notation.
Comments (0)