Lemma 29.6.6. Let

be a commutative diagram of schemes. Let $Z_ i \subset Y_ i$, $i = 1, 2$ be the scheme theoretic image of $f_ i$. Then the morphism $Y_1 \to Y_2$ induces a morphism $Z_1 \to Z_2$ and a commutative diagram

Lemma 29.6.6. Let

\[ \xymatrix{ X_1 \ar[d] \ar[r]_{f_1} & Y_1 \ar[d] \\ X_2 \ar[r]^{f_2} & Y_2 } \]

be a commutative diagram of schemes. Let $Z_ i \subset Y_ i$, $i = 1, 2$ be the scheme theoretic image of $f_ i$. Then the morphism $Y_1 \to Y_2$ induces a morphism $Z_1 \to Z_2$ and a commutative diagram

\[ \xymatrix{ X_1 \ar[r] \ar[d] & Z_1 \ar[d] \ar[r] & Y_1 \ar[d] \\ X_2 \ar[r] & Z_2 \ar[r] & Y_2 } \]

**Proof.**
The scheme theoretic inverse image of $Z_2$ in $Y_1$ is a closed subscheme of $Y_1$ through which $f_1$ factors. Hence $Z_1$ is contained in this. This proves the lemma.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: