Lemma 29.6.7. Let $f : X \to Y$ be a morphism of schemes. If $X$ is reduced, then the scheme theoretic image of $f$ is the reduced induced scheme structure on $\overline{f(X)}$.
Proof. This is true because the reduced induced scheme structure on $\overline{f(X)}$ is clearly the smallest closed subscheme of $Y$ through which $f$ factors, see Schemes, Lemma 26.12.7. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #6820 by Will Chen on
Comment #6962 by Johan on
There are also: