Lemma 29.6.8. Let $f : X \to Y$ be a separated morphism of schemes. Let $V \subset Y$ be a retrocompact open. Let $s : V \to X$ be a morphism such that $f \circ s = \text{id}_ V$. Let $Y'$ be the scheme theoretic image of $s$. Then $Y' \to Y$ is an isomorphism over $V$.

Proof. The assumption that $V$ is retrocompact in $Y$ (Topology, Definition 5.12.1) means that $V \to Y$ is a quasi-compact morphism. By Schemes, Lemma 26.21.14 the morphism $s : V \to X$ is quasi-compact. Hence the construction of the scheme theoretic image $Y'$ of $s$ commutes with restriction to opens by Lemma 29.6.3. In particular, we see that $Y' \cap f^{-1}(V)$ is the scheme theoretic image of a section of the separated morphism $f^{-1}(V) \to V$. Since a section of a separated morphism is a closed immersion (Schemes, Lemma 26.21.11), we conclude that $Y' \cap f^{-1}(V) \to V$ is an isomorphism as desired. $\square$

## Comments (2)

Comment #4726 by Zhaodong Cai on

In the proof $s:V\to Y$ should be $s:V\to X$.

There are also:

• 9 comment(s) on Section 29.6: Scheme theoretic image

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CNG. Beware of the difference between the letter 'O' and the digit '0'.