The Stacks project

Lemma 29.8.6. Let $f : X \to S$ be a morphism of schemes. Suppose that $X$ has finitely many irreducible components. Then $f$ is dominant (if and) only if for every irreducible component $Z \subset S$ the generic point of $Z$ is in the image of $f$. If so, then $S$ has finitely many irreducible components as well.

Proof. Assume $f$ is dominant. Say $X = Z_1 \cup Z_2 \cup \ldots \cup Z_ n$ is the decomposition of $X$ into irreducible components. Let $\xi _ i \in Z_ i$ be its generic point, so $Z_ i = \overline{\{ \xi _ i\} }$. Note that $f(Z_ i)$ is an irreducible subset of $S$. Hence

\[ S = \overline{f(X)} = \bigcup \overline{f(Z_ i)} = \bigcup \overline{\{ f(\xi _ i)\} } \]

is a finite union of irreducible subsets whose generic points are in the image of $f$. The lemma follows. $\square$

Comments (0)

There are also:

  • 5 comment(s) on Section 29.8: Dominant morphisms

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01RM. Beware of the difference between the letter 'O' and the digit '0'.