Lemma 29.8.7. Let $f : X \to Y$ be a morphism of integral schemes. The following are equivalent
$f$ is dominant,
$f$ maps the generic point of $X$ to the generic point of $Y$,
for some nonempty affine opens $U \subset X$ and $V \subset Y$ with $f(U) \subset V$ the ring map $\mathcal{O}_ Y(V) \to \mathcal{O}_ X(U)$ is injective,
for all nonempty affine opens $U \subset X$ and $V \subset Y$ with $f(U) \subset V$ the ring map $\mathcal{O}_ Y(V) \to \mathcal{O}_ X(U)$ is injective,
for some $x \in X$ with image $y = f(x) \in Y$ the local ring map $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$ is injective, and
for all $x \in X$ with image $y = f(x) \in Y$ the local ring map $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$ is injective.
Comments (0)
There are also: