The Stacks project

Lemma 29.20.6. Let $f : X \to S$ be a morphism of schemes. Let $x \in X$ be a point. Set $s = f(x)$. Let $X_ s$ be the fibre of $f$ at $s$. Assume $f$ is locally of finite type. The following are equivalent:

  1. The morphism $f$ is quasi-finite at $x$.

  2. The point $x$ is isolated in $X_ s$.

  3. The point $x$ is closed in $X_ s$ and there is no point $x' \in X_ s$, $x' \not= x$ which specializes to $x$.

  4. For any pair of affine opens $\mathop{\mathrm{Spec}}(A) = U \subset X$, $\mathop{\mathrm{Spec}}(R) = V \subset S$ with $f(U) \subset V$ and $x \in U$ corresponding to $\mathfrak q \subset A$ the ring map $R \to A$ is quasi-finite at $\mathfrak q$.

Proof. Assume $f$ is quasi-finite at $x$. By assumption there exist opens $U \subset X$, $V \subset S$ such that $f(U) \subset V$, $x \in U$ and $x$ an isolated point of $U_ s$. Hence $\{ x\} \subset U_ s$ is an open subset. Since $U_ s = U \cap X_ s \subset X_ s$ is also open we conclude that $\{ x\} \subset X_ s$ is an open subset also. Thus we conclude that $x$ is an isolated point of $X_ s$.

Note that $X_ s$ is a Jacobson scheme by Lemma 29.16.10 (and Lemma 29.15.4). If $x$ is isolated in $X_ s$, i.e., $\{ x\} \subset X_ s$ is open, then $\{ x\} $ contains a closed point (by the Jacobson property), hence $x$ is closed in $X_ s$. It is clear that there is no point $x' \in X_ s$, distinct from $x$, specializing to $x$.

Assume that $x$ is closed in $X_ s$ and that there is no point $x' \in X_ s$, distinct from $x$, specializing to $x$. Consider a pair of affine opens $\mathop{\mathrm{Spec}}(A) = U \subset X$, $\mathop{\mathrm{Spec}}(R) = V \subset S$ with $f(U) \subset V$ and $x \in U$. Let $\mathfrak q \subset A$ correspond to $x$ and $\mathfrak p \subset R$ correspond to $s$. By Lemma 29.15.2 the ring map $R \to A$ is of finite type. Consider the fibre ring $\overline{A} = A \otimes _ R \kappa (\mathfrak p)$. Let $\overline{\mathfrak q}$ be the prime of $\overline{A}$ corresponding to $\mathfrak q$. Since $\mathop{\mathrm{Spec}}(\overline{A})$ is an open subscheme of the fibre $X_ s$ we see that $\overline{q}$ is a maximal ideal of $\overline{A}$ and that there is no point of $\mathop{\mathrm{Spec}}(\overline{A})$ specializing to $\overline{\mathfrak q}$. This implies that $\dim (\overline{A}_{\overline{q}}) = 0$. Hence by Algebra, Definition 10.121.3 we see that $R \to A$ is quasi-finite at $\mathfrak q$, i.e., $X \to S$ is quasi-finite at $x$ by definition.

At this point we have shown conditions (1) – (3) are all equivalent. It is clear that (4) implies (1). And it is also clear that (2) implies (4) since if $x$ is an isolated point of $X_ s$ then it is also an isolated point of $U_ s$ for any open $U$ which contains it. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01TH. Beware of the difference between the letter 'O' and the digit '0'.