Lemma 30.4.6. Let $f : X \to S$ be a morphism of schemes. Assume that $f$ is quasi-separated and quasi-compact. Assume $S$ is affine. For any quasi-coherent $\mathcal{O}_ X$-module $\mathcal{F}$ we have

for all $q \in \mathbf{Z}$.

Lemma 30.4.6. Let $f : X \to S$ be a morphism of schemes. Assume that $f$ is quasi-separated and quasi-compact. Assume $S$ is affine. For any quasi-coherent $\mathcal{O}_ X$-module $\mathcal{F}$ we have

\[ H^ q(X, \mathcal{F}) = H^0(S, R^ qf_*\mathcal{F}) \]

for all $q \in \mathbf{Z}$.

**Proof.**
Consider the Leray spectral sequence $E_2^{p, q} = H^ p(S, R^ qf_*\mathcal{F})$ converging to $H^{p + q}(X, \mathcal{F})$, see Cohomology, Lemma 20.13.4. By Lemma 30.4.5 we see that the sheaves $R^ qf_*\mathcal{F}$ are quasi-coherent. By Lemma 30.2.2 we see that $E_2^{p, q} = 0$ when $p > 0$. Hence the spectral sequence degenerates at $E_2$ and we win. See also Cohomology, Lemma 20.13.6 (2) for the general principle.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #3031 by Brian Lawrence on

Comment #3144 by Johan on

There are also: