Lemma 30.12.4. Let $X$ be a Noetherian scheme. Let $\mathcal{P}$ be a property of coherent sheaves on $X$. Assume

1. For any short exact sequence of coherent sheaves

$0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0$

if $\mathcal{F}_ i$, $i = 1, 2$ have property $\mathcal{P}$ then so does $\mathcal{F}$.

2. For every integral closed subscheme $Z \subset X$ and every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_ Z$ we have $\mathcal{P}$ for $i_*\mathcal{I}$.

Then property $\mathcal{P}$ holds for every coherent sheaf on $X$.

Proof. First note that if $\mathcal{F}$ is a coherent sheaf with a filtration

$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_ m = \mathcal{F}$

by coherent subsheaves such that each of $\mathcal{F}_ i/\mathcal{F}_{i - 1}$ has property $\mathcal{P}$, then so does $\mathcal{F}$. This follows from the property (1) for $\mathcal{P}$. On the other hand, by Lemma 30.12.3 we can filter any $\mathcal{F}$ with successive subquotients as in (2). Hence the lemma follows. $\square$

There are also:

• 5 comment(s) on Section 30.12: Devissage of coherent sheaves

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).