Lemma 30.12.8. Let $X$ be a Noetherian scheme. Let $\mathcal{P}$ be a property of coherent sheaves on $X$ such that

For any short exact sequence of coherent sheaves

\[ 0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0 \]if $\mathcal{F}_ i$, $i = 1, 2$ have property $\mathcal{P}$ then so does $\mathcal{F}$.

If $\mathcal{P}$ holds for $\mathcal{F}^{\oplus r}$ for some $r \geq 1$, then it holds for $\mathcal{F}$.

For every integral closed subscheme $Z \subset X$ with generic point $\xi $ there exists some coherent sheaf $\mathcal{G}$ such that

$\text{Supp}(\mathcal{G}) = Z$,

$\mathcal{G}_\xi $ is annihilated by $\mathfrak m_\xi $, and

for every quasi-coherent sheaf of ideals $\mathcal{J} \subset \mathcal{O}_ X$ such that $\mathcal{J}_\xi = \mathcal{O}_{X, \xi }$ there exists a quasi-coherent subsheaf $\mathcal{G}' \subset \mathcal{J}\mathcal{G}$ with $\mathcal{G}'_\xi = \mathcal{G}_\xi $ and such that $\mathcal{P}$ holds for $\mathcal{G}'$.

Then property $\mathcal{P}$ holds for every coherent sheaf on $X$.

## Comments (0)

There are also: