Lemma 32.2.3. Let $I$ be a directed set. Let $(S_ i, f_{ii'})$ be an inverse system of schemes over $I$. Assume all the morphisms $f_{ii'} : S_ i \to S_{i'}$ are affine, Let $S = \mathop{\mathrm{lim}}\nolimits _ i S_ i$. Let $0 \in I$. Suppose that $T$ is a scheme over $S_0$. Then
\[ T \times _{S_0} S = \mathop{\mathrm{lim}}\nolimits _{i \geq 0} T \times _{S_0} S_ i \]
Proof. The right hand side is a scheme by Lemma 32.2.2. The equality is formal, see Categories, Lemma 4.14.10. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)