Lemma 32.5.2. Suppose given a cartesian diagram of rings
Let $W' \subset \mathop{\mathrm{Spec}}(R')$ be an open of the form $W' = D(f_1) \cup \ldots \cup D(f_ n)$ such that $t(f_ i) = s(g_ i)$ for some $g_ i \in B$ and $B_{g_ i} \cong R_{s(g_ i)}$. Then $B' \to R'$ induces an open immersion of $W'$ into $\mathop{\mathrm{Spec}}(B')$.
Comments (0)
There are also: