Lemma 34.4.16. Let \mathit{Sch}_{\acute{e}tale} be a big étale site. Let f : T \to S be a morphism in \mathit{Sch}_{\acute{e}tale}. The functor
u : (\mathit{Sch}/T)_{\acute{e}tale}\longrightarrow (\mathit{Sch}/S)_{\acute{e}tale}, \quad V/T \longmapsto V/S
is cocontinuous, and has a continuous right adjoint
v : (\mathit{Sch}/S)_{\acute{e}tale}\longrightarrow (\mathit{Sch}/T)_{\acute{e}tale}, \quad (U \to S) \longmapsto (U \times _ S T \to T).
They induce the same morphism of topoi
f_{big} : \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/T)_{\acute{e}tale}) \longrightarrow \mathop{\mathit{Sh}}\nolimits ((\mathit{Sch}/S)_{\acute{e}tale})
We have f_{big}^{-1}(\mathcal{G})(U/T) = \mathcal{G}(U/S). We have f_{big, *}(\mathcal{F})(U/S) = \mathcal{F}(U \times _ S T/T). Also, f_{big}^{-1} has a left adjoint f_{big!} which commutes with fibre products and equalizers.
Proof.
The functor u is cocontinuous, continuous and commutes with fibre products and equalizers (details omitted; compare with the proof of Lemma 34.4.13). Hence Sites, Lemmas 7.21.5 and 7.21.6 apply and we deduce the formula for f_{big}^{-1} and the existence of f_{big!}. Moreover, the functor v is a right adjoint because given U/T and V/S we have \mathop{\mathrm{Mor}}\nolimits _ S(u(U), V) = \mathop{\mathrm{Mor}}\nolimits _ T(U, V \times _ S T) as desired. Thus we may apply Sites, Lemmas 7.22.1 and 7.22.2 to get the formula for f_{big, *}.
\square
Comments (0)