Lemma 85.27.4. Let $f : X \to S$ be a morphism of schemes. Let $\pi : Y \to (X/S)_\bullet $ be a cartesian morphism of simplicial schemes. Set $V = Y_0$ considered as a scheme over $X$. The morphisms $d^1_0, d^1_1 : Y_1 \to Y_0$ and the morphism $\pi _1 : Y_1 \to X \times _ S X$ induce isomorphisms

Denote $\varphi : V \times _ S X \to X \times _ S V$ the resulting isomorphism. Then the pair $(V, \varphi )$ is a descent datum relative to $X \to S$.

## Comments (0)