The Stacks project

Lemma 37.40.1. Let $S$ be a scheme. Let $s \in S$. Let $f : (U, u) \to (S, s)$ be an étale neighbourhood. There exists an affine open neighbourhood $s \in V \subset S$ and a surjective, finite locally free morphism $\pi : T \to V$ such that for every $t \in \pi ^{-1}(s)$ there exists an open neighbourhood $t \in W_ t \subset T$ and a commutative diagram

\[ \xymatrix{ T \ar[d]^\pi & W_ t \ar[l] \ar[rr]_{h_ t} \ar[rd] & & U \ar[dl] \\ V \ar[rr] & & S } \]

with $h_ t(t) = u$.

Proof. The problem is local on $S$ hence we may replace $S$ by any open neighbourhood of $s$. We may also replace $U$ by an open neighbourhood of $u$. Hence, by Morphisms, Lemma 29.36.14 we may assume that $U \to S$ is a standard étale morphism of affine schemes. In this case the lemma (with $V = S$) follows from Algebra, Lemma 10.144.5. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02LG. Beware of the difference between the letter 'O' and the digit '0'.