Lemma 37.40.1. Let $S$ be a scheme. Let $s \in S$. Let $f : (U, u) \to (S, s)$ be an étale neighbourhood. There exists an affine open neighbourhood $s \in V \subset S$ and a surjective, finite locally free morphism $\pi : T \to V$ such that for every $t \in \pi ^{-1}(s)$ there exists an open neighbourhood $t \in W_ t \subset T$ and a commutative diagram

$\xymatrix{ T \ar[d]^\pi & W_ t \ar[l] \ar[rr]_{h_ t} \ar[rd] & & U \ar[dl] \\ V \ar[rr] & & S }$

with $h_ t(t) = u$.

Proof. The problem is local on $S$ hence we may replace $S$ by any open neighbourhood of $s$. We may also replace $U$ by an open neighbourhood of $u$. Hence, by Morphisms, Lemma 29.36.14 we may assume that $U \to S$ is a standard étale morphism of affine schemes. In this case the lemma (with $V = S$) follows from Algebra, Lemma 10.144.5. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).