Lemma 10.25.4. Let $R$ be a ring. Assume that $R$ has finitely many minimal primes $\mathfrak q_1, \ldots , \mathfrak q_ t$, and that $\mathfrak q_1 \cup \ldots \cup \mathfrak q_ t$ is the set of zerodivisors of $R$. Then the total ring of fractions $Q(R)$ is equal to $R_{\mathfrak q_1} \times \ldots \times R_{\mathfrak q_ t}$.

Proof. There are natural maps $Q(R) \to R_{\mathfrak q_ i}$ since any nonzerodivisor is contained in $R \setminus \mathfrak q_ i$. Hence a natural map $Q(R) \to R_{\mathfrak q_1} \times \ldots \times R_{\mathfrak q_ t}$. For any nonminimal prime $\mathfrak p \subset R$ we see that $\mathfrak p \not\subset \mathfrak q_1 \cup \ldots \cup \mathfrak q_ t$ by Lemma 10.15.2. Hence $\mathop{\mathrm{Spec}}(Q(R)) = \{ \mathfrak q_1, \ldots , \mathfrak q_ t\}$ (as subsets of $\mathop{\mathrm{Spec}}(R)$, see Lemma 10.17.5). Therefore $\mathop{\mathrm{Spec}}(Q(R))$ is a finite discrete set and it follows that $Q(R) = A_1 \times \ldots \times A_ t$ with $\mathop{\mathrm{Spec}}(A_ i) = \{ q_ i\}$, see Lemma 10.24.3. Moreover $A_ i$ is a local ring, which is a localization of $R$. Hence $A_ i \cong R_{\mathfrak q_ i}$. $\square$

There are also:

• 4 comment(s) on Section 10.25: Zerodivisors and total rings of fractions

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02LX. Beware of the difference between the letter 'O' and the digit '0'.