Lemma 10.25.4. Let R be a ring. Assume that R has finitely many minimal primes \mathfrak q_1, \ldots , \mathfrak q_ t, and that \mathfrak q_1 \cup \ldots \cup \mathfrak q_ t is the set of zerodivisors of R. Then the total ring of fractions Q(R) is equal to R_{\mathfrak q_1} \times \ldots \times R_{\mathfrak q_ t}.
Proof. There are natural maps Q(R) \to R_{\mathfrak q_ i} since any nonzerodivisor is contained in R \setminus \mathfrak q_ i. Hence a natural map Q(R) \to R_{\mathfrak q_1} \times \ldots \times R_{\mathfrak q_ t}. For any nonminimal prime \mathfrak p \subset R we see that \mathfrak p \not\subset \mathfrak q_1 \cup \ldots \cup \mathfrak q_ t by Lemma 10.15.2. Hence \mathop{\mathrm{Spec}}(Q(R)) = \{ \mathfrak q_1, \ldots , \mathfrak q_ t\} (as subsets of \mathop{\mathrm{Spec}}(R), see Lemma 10.17.5). Therefore \mathop{\mathrm{Spec}}(Q(R)) is a finite discrete set and it follows that Q(R) = A_1 \times \ldots \times A_ t with \mathop{\mathrm{Spec}}(A_ i) = \{ \mathfrak {q}_ i\} , see Lemma 10.24.3. Moreover A_ i is a local ring, which is a localization of R. Hence A_ i \cong R_{\mathfrak q_ i}. \square
Comments (0)
There are also: