Lemma 42.69.3. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be a scheme locally of finite type over $S$. The map

from Lemma 42.23.4 induces a bijection from $\mathop{\mathrm{CH}}\nolimits _ k(X)$ onto the image $B_ k(X)$ of the map

Lemma 42.69.3. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be a scheme locally of finite type over $S$. The map

\[ \mathop{\mathrm{CH}}\nolimits _ k(X) \longrightarrow K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)) \]

from Lemma 42.23.4 induces a bijection from $\mathop{\mathrm{CH}}\nolimits _ k(X)$ onto the image $B_ k(X)$ of the map

\[ K_0(\textit{Coh}_{\leq k}(X)/\textit{Coh}_{\leq k - 1}(X)) \longrightarrow K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)). \]

**Proof.**
By Lemma 42.23.2 we have $Z_ k(X) = K_0(\textit{Coh}_{\leq k}(X)/\textit{Coh}_{\leq k - 1}(X))$ compatible with the map of Lemma 42.23.4. Thus, suppose we have an element $[A] - [B]$ of $K_0(\textit{Coh}_{\leq k}(X)/\textit{Coh}_{\leq k - 1}(X))$ which maps to zero in $B_ k(X)$, i.e., maps to zero in $K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))$. We have to show that $[A] - [B]$ corresponds to a cycle rationally equivalent to zero on $X$. Suppose $[A] = [\mathcal{A}]$ and $[B] = [\mathcal{B}]$ for some coherent sheaves $\mathcal{A}, \mathcal{B}$ on $X$ supported in $\delta $-dimension $\leq k$. The assumption that $[A] - [B]$ maps to zero in the group $K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))$ means that there exists coherent sheaves $\mathcal{A}', \mathcal{B}'$ on $X$ supported in $\delta $-dimension $\leq k - 1$ such that $[\mathcal{A} \oplus \mathcal{A}'] - [\mathcal{B} \oplus \mathcal{B}']$ is zero in $K_0(\textit{Coh}_{k + 1}(X))$ (use part (1) of Homology, Lemma 12.11.3). By part (2) of Homology, Lemma 12.11.3 this means there exists a $(2, 1)$-periodic complex $(\mathcal{F}, \varphi , \psi )$ in the category $\textit{Coh}_{\leq k + 1}(X)$ such that $\mathcal{A} \oplus \mathcal{A}' = H^0(\mathcal{F}, \varphi , \psi )$ and $\mathcal{B} \oplus \mathcal{B}' = H^1(\mathcal{F}, \varphi , \psi )$. By Lemma 42.69.2 this implies that

\[ [\mathcal{A} \oplus \mathcal{A}']_ k \sim _{rat} [\mathcal{B} \oplus \mathcal{B}']_ k \]

This proves that $[A] - [B]$ maps to a cycle rationally equivalent to zero by the map

\[ K_0(\textit{Coh}_{\leq k}(X)/\textit{Coh}_{\leq k - 1}(X)) \longrightarrow Z_ k(X) \]

of Lemma 42.23.2. This is what we had to prove and the proof is complete. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)