42.69.4 Cartier divisors and K-groups
In this section we describe how the intersection with the first Chern class of an invertible sheaf \mathcal{L} corresponds to tensoring with \mathcal{L} - \mathcal{O} in K-groups.
Lemma 42.69.5. Let A be a Noetherian local ring. Let M be a finite A-module. Let a, b \in A. Assume
\dim (A) = 1,
both a and b are nonzerodivisors in A,
A has no embedded primes,
M has no embedded associated primes,
\text{Supp}(M) = \mathop{\mathrm{Spec}}(A).
Let I = \{ x \in A \mid x(a/b) \in A\} . Let \mathfrak q_1, \ldots , \mathfrak q_ t be the minimal primes of A. Then (a/b)IM \subset M and
\text{length}_ A(M/(a/b)IM) - \text{length}_ A(M/IM) = \sum \nolimits _ i \text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i}) \text{ord}_{A/\mathfrak q_ i}(a/b)
Proof.
Since M has no embedded associated primes, and since the support of M is \mathop{\mathrm{Spec}}(A) we see that \text{Ass}(M) = \{ \mathfrak q_1, \ldots , \mathfrak q_ t\} . Hence a, b are nonzerodivisors on M. Note that
\begin{align*} & \text{length}_ A(M/(a/b)IM) \\ & = \text{length}_ A(bM/aIM) \\ & = \text{length}_ A(M/aIM) - \text{length}_ A(M/bM) \\ & = \text{length}_ A(M/aM) + \text{length}_ A(aM/aIM) - \text{length}_ A(M/bM) \\ & = \text{length}_ A(M/aM) + \text{length}_ A(M/IM) - \text{length}_ A(M/bM) \end{align*}
as the injective map b : M \to bM maps (a/b)IM to aIM and the injective map a : M \to aM maps IM to aIM. Hence the left hand side of the equation of the lemma is equal to
\text{length}_ A(M/aM) - \text{length}_ A(M/bM).
Applying the second formula of Lemma 42.3.2 with x = a, b respectively and using Algebra, Definition 10.121.2 of the \text{ord}-functions we get the result.
\square
Lemma 42.69.6. Let (S, \delta ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Let \mathcal{F} be a coherent \mathcal{O}_ X-module. Let s \in \Gamma (X, \mathcal{K}_ X(\mathcal{L})) be a meromorphic section of \mathcal{L}. Assume
\dim _\delta (X) \leq k + 1,
X has no embedded points,
\mathcal{F} has no embedded associated points,
the support of \mathcal{F} is X, and
the section s is regular meromorphic.
In this situation let \mathcal{I} \subset \mathcal{O}_ X be the ideal of denominators of s, see Divisors, Definition 31.23.10. Then we have the following:
there are short exact sequences
\begin{matrix} 0
& \to
& \mathcal{I}\mathcal{F}
& \xrightarrow {1}
& \mathcal{F}
& \to
& \mathcal{Q}_1
& \to
& 0
\\ 0
& \to
& \mathcal{I}\mathcal{F}
& \xrightarrow {s}
& \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}
& \to
& \mathcal{Q}_2
& \to
& 0
\end{matrix}
the coherent sheaves \mathcal{Q}_1, \mathcal{Q}_2 are supported in \delta -dimension \leq k,
the section s restricts to a regular meromorphic section s_ i on every irreducible component X_ i of X of \delta -dimension k + 1, and
writing [\mathcal{F}]_{k + 1} = \sum m_ i[X_ i] we have
[\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = \sum m_ i(X_ i \to X)_*\text{div}_{\mathcal{L}|_{X_ i}}(s_ i)
in Z_ k(X), in particular
[\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1}
in \mathop{\mathrm{CH}}\nolimits _ k(X).
Proof.
Recall from Divisors, Lemma 31.24.5 the existence of injective maps 1 : \mathcal{I}\mathcal{F} \to \mathcal{F} and s : \mathcal{I}\mathcal{F} \to \mathcal{F} \otimes _{\mathcal{O}_ X}\mathcal{L} whose cokernels are supported on a closed nowhere dense subsets T. Denote \mathcal{Q}_ i there cokernels as in the lemma. We conclude that \dim _\delta (\text{Supp}(\mathcal{Q}_ i)) \leq k. By Divisors, Lemmas 31.23.5 and 31.23.8 the pullbacks s_ i are defined and are regular meromorphic sections for \mathcal{L}|_{X_ i}. The equality of cycles in (4) implies the equality of cycle classes in (4). Hence the only remaining thing to show is that
[\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = \sum m_ i(X_ i \to X)_*\text{div}_{\mathcal{L}|_{X_ i}}(s_ i)
holds in Z_ k(X). To see this, let Z \subset X be an integral closed subscheme of \delta -dimension k. Let \xi \in Z be the generic point. Let A = \mathcal{O}_{X, \xi } and M = \mathcal{F}_\xi . Moreover, choose a generator s_\xi \in \mathcal{L}_\xi . Then we can write s = (a/b) s_\xi where a, b \in A are nonzerodivisors. In this case I = \mathcal{I}_\xi = \{ x \in A \mid x(a/b) \in A\} . In this case the coefficient of [Z] in the left hand side is
\text{length}_ A(M/(a/b)IM) - \text{length}_ A(M/IM)
and the coefficient of [Z] in the right hand side is
\sum \text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i}) \text{ord}_{A/\mathfrak q_ i}(a/b)
where \mathfrak q_1, \ldots , \mathfrak q_ t are the minimal primes of the 1-dimensional local ring A. Hence the result follows from Lemma 42.69.5.
\square
Lemma 42.69.7. Let (S, \delta ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Let \mathcal{F} be a coherent \mathcal{O}_ X-module. Assume \dim _\delta (\text{Supp}(\mathcal{F})) \leq k + 1. Then the element
[\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] \in K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))
lies in the subgroup B_ k(X) of Lemma 42.69.3 and maps to the element c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1} via the map B_ k(X) \to \mathop{\mathrm{CH}}\nolimits _ k(X).
Proof.
Let
0 \to \mathcal{K} \to \mathcal{F} \to \mathcal{F}' \to 0
be the short exact sequence constructed in Divisors, Lemma 31.4.6. This in particular means that \mathcal{F}' has no embedded associated points. Since the support of \mathcal{K} is nowhere dense in the support of \mathcal{F} we see that \dim _\delta (\text{Supp}(\mathcal{K})) \leq k. We may re-apply Divisors, Lemma 31.4.6 starting with \mathcal{K} to get a short exact sequence
0 \to \mathcal{K}'' \to \mathcal{K} \to \mathcal{K}' \to 0
where now \dim _\delta (\text{Supp}(\mathcal{K}'')) < k and \mathcal{K}' has no embedded associated points. Suppose we can prove the lemma for the coherent sheaves \mathcal{F}' and \mathcal{K}'. Then we see from the equations
[\mathcal{F}]_{k + 1} = [\mathcal{F}']_{k + 1} + [\mathcal{K}']_{k + 1} + [\mathcal{K}'']_{k + 1}
(use Lemma 42.10.4),
[\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] = [\mathcal{F}' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}'] + [\mathcal{K}' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}'] + [\mathcal{K}'' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}'']
(use the \otimes \mathcal{L} is exact) and the trivial vanishing of [\mathcal{K}'']_{k + 1} and [\mathcal{K}'' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}''] in K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)) that the result holds for \mathcal{F}. What this means is that we may assume that the sheaf \mathcal{F} has no embedded associated points.
Assume X, \mathcal{F} as in the lemma, and assume in addition that \mathcal{F} has no embedded associated points. Consider the sheaf of ideals \mathcal{I} \subset \mathcal{O}_ X, the corresponding closed subscheme i : Z \to X and the coherent \mathcal{O}_ Z-module \mathcal{G} constructed in Divisors, Lemma 31.4.7. Recall that Z is a locally Noetherian scheme without embedded points, \mathcal{G} is a coherent sheaf without embedded associated points, with \text{Supp}(\mathcal{G}) = Z and such that i_*\mathcal{G} = \mathcal{F}. Moreover, set \mathcal{N} = \mathcal{L}|_ Z.
By Divisors, Lemma 31.25.4 the invertible sheaf \mathcal{N} has a regular meromorphic section s over Z. Let us denote \mathcal{J} \subset \mathcal{O}_ Z the sheaf of denominators of s. By Lemma 42.69.6 there exist short exact sequences
\begin{matrix} 0
& \to
& \mathcal{J}\mathcal{G}
& \xrightarrow {1}
& \mathcal{G}
& \to
& \mathcal{Q}_1
& \to
& 0
\\ 0
& \to
& \mathcal{J}\mathcal{G}
& \xrightarrow {s}
& \mathcal{G} \otimes _{\mathcal{O}_ Z} \mathcal{N}
& \to
& \mathcal{Q}_2
& \to
& 0
\end{matrix}
such that \dim _\delta (\text{Supp}(\mathcal{Q}_ i)) \leq k and such that the cycle [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k is a representative of c_1(\mathcal{N}) \cap [\mathcal{G}]_{k + 1}. We see (using the fact that i_*(\mathcal{G} \otimes \mathcal{N}) = \mathcal{F} \otimes \mathcal{L} by the projection formula, see Cohomology, Lemma 20.54.2) that
[\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] = [i_*\mathcal{Q}_2] - [i_*\mathcal{Q}_1]
in K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)). This already shows that [\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] is an element of B_ k(X). Moreover we have
\begin{eqnarray*} [i_*\mathcal{Q}_2]_ k - [i_*\mathcal{Q}_1]_ k & = & i_*\left( [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k \right) \\ & = & i_*\left(c_1(\mathcal{N}) \cap [\mathcal{G}]_{k + 1} \right) \\ & = & c_1(\mathcal{L}) \cap i_*[\mathcal{G}]_{k + 1} \\ & = & c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1} \end{eqnarray*}
by the above and Lemmas 42.26.4 and 42.12.4. And this agree with the image of the element under B_ k(X) \to \mathop{\mathrm{CH}}\nolimits _ k(X) by definition. Hence the lemma is proved.
\square
Comments (0)