Processing math: 100%

The Stacks project

42.69.4 Cartier divisors and K-groups

In this section we describe how the intersection with the first Chern class of an invertible sheaf \mathcal{L} corresponds to tensoring with \mathcal{L} - \mathcal{O} in K-groups.

Lemma 42.69.5. Let A be a Noetherian local ring. Let M be a finite A-module. Let a, b \in A. Assume

  1. \dim (A) = 1,

  2. both a and b are nonzerodivisors in A,

  3. A has no embedded primes,

  4. M has no embedded associated primes,

  5. \text{Supp}(M) = \mathop{\mathrm{Spec}}(A).

Let I = \{ x \in A \mid x(a/b) \in A\} . Let \mathfrak q_1, \ldots , \mathfrak q_ t be the minimal primes of A. Then (a/b)IM \subset M and

\text{length}_ A(M/(a/b)IM) - \text{length}_ A(M/IM) = \sum \nolimits _ i \text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i}) \text{ord}_{A/\mathfrak q_ i}(a/b)

Proof. Since M has no embedded associated primes, and since the support of M is \mathop{\mathrm{Spec}}(A) we see that \text{Ass}(M) = \{ \mathfrak q_1, \ldots , \mathfrak q_ t\} . Hence a, b are nonzerodivisors on M. Note that

\begin{align*} & \text{length}_ A(M/(a/b)IM) \\ & = \text{length}_ A(bM/aIM) \\ & = \text{length}_ A(M/aIM) - \text{length}_ A(M/bM) \\ & = \text{length}_ A(M/aM) + \text{length}_ A(aM/aIM) - \text{length}_ A(M/bM) \\ & = \text{length}_ A(M/aM) + \text{length}_ A(M/IM) - \text{length}_ A(M/bM) \end{align*}

as the injective map b : M \to bM maps (a/b)IM to aIM and the injective map a : M \to aM maps IM to aIM. Hence the left hand side of the equation of the lemma is equal to

\text{length}_ A(M/aM) - \text{length}_ A(M/bM).

Applying the second formula of Lemma 42.3.2 with x = a, b respectively and using Algebra, Definition 10.121.2 of the \text{ord}-functions we get the result. \square

Lemma 42.69.6. Let (S, \delta ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Let \mathcal{F} be a coherent \mathcal{O}_ X-module. Let s \in \Gamma (X, \mathcal{K}_ X(\mathcal{L})) be a meromorphic section of \mathcal{L}. Assume

  1. \dim _\delta (X) \leq k + 1,

  2. X has no embedded points,

  3. \mathcal{F} has no embedded associated points,

  4. the support of \mathcal{F} is X, and

  5. the section s is regular meromorphic.

In this situation let \mathcal{I} \subset \mathcal{O}_ X be the ideal of denominators of s, see Divisors, Definition 31.23.10. Then we have the following:

  1. there are short exact sequences

    \begin{matrix} 0 & \to & \mathcal{I}\mathcal{F} & \xrightarrow {1} & \mathcal{F} & \to & \mathcal{Q}_1 & \to & 0 \\ 0 & \to & \mathcal{I}\mathcal{F} & \xrightarrow {s} & \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L} & \to & \mathcal{Q}_2 & \to & 0 \end{matrix}
  2. the coherent sheaves \mathcal{Q}_1, \mathcal{Q}_2 are supported in \delta -dimension \leq k,

  3. the section s restricts to a regular meromorphic section s_ i on every irreducible component X_ i of X of \delta -dimension k + 1, and

  4. writing [\mathcal{F}]_{k + 1} = \sum m_ i[X_ i] we have

    [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = \sum m_ i(X_ i \to X)_*\text{div}_{\mathcal{L}|_{X_ i}}(s_ i)

    in Z_ k(X), in particular

    [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1}

    in \mathop{\mathrm{CH}}\nolimits _ k(X).

Proof. Recall from Divisors, Lemma 31.24.5 the existence of injective maps 1 : \mathcal{I}\mathcal{F} \to \mathcal{F} and s : \mathcal{I}\mathcal{F} \to \mathcal{F} \otimes _{\mathcal{O}_ X}\mathcal{L} whose cokernels are supported on a closed nowhere dense subsets T. Denote \mathcal{Q}_ i there cokernels as in the lemma. We conclude that \dim _\delta (\text{Supp}(\mathcal{Q}_ i)) \leq k. By Divisors, Lemmas 31.23.5 and 31.23.8 the pullbacks s_ i are defined and are regular meromorphic sections for \mathcal{L}|_{X_ i}. The equality of cycles in (4) implies the equality of cycle classes in (4). Hence the only remaining thing to show is that

[\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k = \sum m_ i(X_ i \to X)_*\text{div}_{\mathcal{L}|_{X_ i}}(s_ i)

holds in Z_ k(X). To see this, let Z \subset X be an integral closed subscheme of \delta -dimension k. Let \xi \in Z be the generic point. Let A = \mathcal{O}_{X, \xi } and M = \mathcal{F}_\xi . Moreover, choose a generator s_\xi \in \mathcal{L}_\xi . Then we can write s = (a/b) s_\xi where a, b \in A are nonzerodivisors. In this case I = \mathcal{I}_\xi = \{ x \in A \mid x(a/b) \in A\} . In this case the coefficient of [Z] in the left hand side is

\text{length}_ A(M/(a/b)IM) - \text{length}_ A(M/IM)

and the coefficient of [Z] in the right hand side is

\sum \text{length}_{A_{\mathfrak q_ i}}(M_{\mathfrak q_ i}) \text{ord}_{A/\mathfrak q_ i}(a/b)

where \mathfrak q_1, \ldots , \mathfrak q_ t are the minimal primes of the 1-dimensional local ring A. Hence the result follows from Lemma 42.69.5. \square

Lemma 42.69.7. Let (S, \delta ) be as in Situation 42.7.1. Let X be locally of finite type over S. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Let \mathcal{F} be a coherent \mathcal{O}_ X-module. Assume \dim _\delta (\text{Supp}(\mathcal{F})) \leq k + 1. Then the element

[\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] \in K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X))

lies in the subgroup B_ k(X) of Lemma 42.69.3 and maps to the element c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1} via the map B_ k(X) \to \mathop{\mathrm{CH}}\nolimits _ k(X).

Proof. Let

0 \to \mathcal{K} \to \mathcal{F} \to \mathcal{F}' \to 0

be the short exact sequence constructed in Divisors, Lemma 31.4.6. This in particular means that \mathcal{F}' has no embedded associated points. Since the support of \mathcal{K} is nowhere dense in the support of \mathcal{F} we see that \dim _\delta (\text{Supp}(\mathcal{K})) \leq k. We may re-apply Divisors, Lemma 31.4.6 starting with \mathcal{K} to get a short exact sequence

0 \to \mathcal{K}'' \to \mathcal{K} \to \mathcal{K}' \to 0

where now \dim _\delta (\text{Supp}(\mathcal{K}'')) < k and \mathcal{K}' has no embedded associated points. Suppose we can prove the lemma for the coherent sheaves \mathcal{F}' and \mathcal{K}'. Then we see from the equations

[\mathcal{F}]_{k + 1} = [\mathcal{F}']_{k + 1} + [\mathcal{K}']_{k + 1} + [\mathcal{K}'']_{k + 1}

(use Lemma 42.10.4),

[\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] = [\mathcal{F}' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}'] + [\mathcal{K}' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}'] + [\mathcal{K}'' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}'']

(use the \otimes \mathcal{L} is exact) and the trivial vanishing of [\mathcal{K}'']_{k + 1} and [\mathcal{K}'' \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{K}''] in K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)) that the result holds for \mathcal{F}. What this means is that we may assume that the sheaf \mathcal{F} has no embedded associated points.

Assume X, \mathcal{F} as in the lemma, and assume in addition that \mathcal{F} has no embedded associated points. Consider the sheaf of ideals \mathcal{I} \subset \mathcal{O}_ X, the corresponding closed subscheme i : Z \to X and the coherent \mathcal{O}_ Z-module \mathcal{G} constructed in Divisors, Lemma 31.4.7. Recall that Z is a locally Noetherian scheme without embedded points, \mathcal{G} is a coherent sheaf without embedded associated points, with \text{Supp}(\mathcal{G}) = Z and such that i_*\mathcal{G} = \mathcal{F}. Moreover, set \mathcal{N} = \mathcal{L}|_ Z.

By Divisors, Lemma 31.25.4 the invertible sheaf \mathcal{N} has a regular meromorphic section s over Z. Let us denote \mathcal{J} \subset \mathcal{O}_ Z the sheaf of denominators of s. By Lemma 42.69.6 there exist short exact sequences

\begin{matrix} 0 & \to & \mathcal{J}\mathcal{G} & \xrightarrow {1} & \mathcal{G} & \to & \mathcal{Q}_1 & \to & 0 \\ 0 & \to & \mathcal{J}\mathcal{G} & \xrightarrow {s} & \mathcal{G} \otimes _{\mathcal{O}_ Z} \mathcal{N} & \to & \mathcal{Q}_2 & \to & 0 \end{matrix}

such that \dim _\delta (\text{Supp}(\mathcal{Q}_ i)) \leq k and such that the cycle [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k is a representative of c_1(\mathcal{N}) \cap [\mathcal{G}]_{k + 1}. We see (using the fact that i_*(\mathcal{G} \otimes \mathcal{N}) = \mathcal{F} \otimes \mathcal{L} by the projection formula, see Cohomology, Lemma 20.54.2) that

[\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] = [i_*\mathcal{Q}_2] - [i_*\mathcal{Q}_1]

in K_0(\textit{Coh}_{\leq k + 1}(X)/\textit{Coh}_{\leq k - 1}(X)). This already shows that [\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}] - [\mathcal{F}] is an element of B_ k(X). Moreover we have

\begin{eqnarray*} [i_*\mathcal{Q}_2]_ k - [i_*\mathcal{Q}_1]_ k & = & i_*\left( [\mathcal{Q}_2]_ k - [\mathcal{Q}_1]_ k \right) \\ & = & i_*\left(c_1(\mathcal{N}) \cap [\mathcal{G}]_{k + 1} \right) \\ & = & c_1(\mathcal{L}) \cap i_*[\mathcal{G}]_{k + 1} \\ & = & c_1(\mathcal{L}) \cap [\mathcal{F}]_{k + 1} \end{eqnarray*}

by the above and Lemmas 42.26.4 and 42.12.4. And this agree with the image of the element under B_ k(X) \to \mathop{\mathrm{CH}}\nolimits _ k(X) by definition. Hence the lemma is proved. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.