Lemma 42.29.4. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $(\mathcal{L}, s, i : D \to X)$ be as in Definition 42.29.1. Let $\alpha$ be a $(k + 1)$-cycle on $X$. Then $i_*i^*\alpha = c_1(\mathcal{L}) \cap \alpha$ in $\mathop{\mathrm{CH}}\nolimits _ k(X)$. In particular, if $D$ is an effective Cartier divisor, then $D \cdot \alpha = c_1(\mathcal{O}_ X(D)) \cap \alpha$.

Proof. Write $\alpha = \sum n_ j[W_ j]$ where $i_ j : W_ j \to X$ are integral closed subschemes with $\dim _\delta (W_ j) = k$. Since $D$ is the zero scheme of $s$ we see that $D \cap W_ j$ is the zero scheme of the restriction $s|_{W_ j}$. Hence for each $j$ such that $W_ j \not\subset D$ we have $c_1(\mathcal{L}) \cap [W_ j] = [D \cap W_ j]_ k$ by Lemma 42.25.4. So we have

$c_1(\mathcal{L}) \cap \alpha = \sum \nolimits _{W_ j \not\subset D} n_ j[D \cap W_ j]_ k + \sum \nolimits _{W_ j \subset D} n_ j i_{j, *}(c_1(\mathcal{L})|_{W_ j}) \cap [W_ j])$

in $\mathop{\mathrm{CH}}\nolimits _ k(X)$ by Definition 42.25.1. The right hand side matches (termwise) the pushforward of the class $i^*\alpha$ on $D$ from Definition 42.29.1. Hence we win. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).