Lemma 65.5.5. Let S be a scheme contained in \mathit{Sch}_{fppf}. Let F, G, H : (\mathit{Sch}/S)_{fppf}^{opp} \to \textit{Sets}. Let \mathcal{P} be a property as in Definition 65.5.1. Let a : F \to G be a representable transformations of functors. Let b : H \to G be any transformation of functors. Consider the fibre product diagram
If a has property \mathcal{P} then also the base change a' has property \mathcal{P}.
Comments (0)